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Abstract: Performance assessment of ocean color satellite data has generally relied on 
statistical metrics chosen for their common usage and the rationale for selecting certain 
metrics is infrequently explained. Commonly reported statistics based on mean squared 
errors, such as the coefficient of determination (r2), root mean square error, and regression 
slopes, are most appropriate for Gaussian distributions without outliers and, therefore, are 
often not ideal for ocean color algorithm performance assessment, which is often limited by 
sample availability. In contrast, metrics based on simple deviations, such as bias and mean 
absolute error, as well as pair-wise comparisons, often provide more robust and 
straightforward quantities for evaluating ocean color algorithms with non-Gaussian 
distributions and outliers. This study uses a SeaWiFS chlorophyll-a validation data set to 
demonstrate a framework for satellite data product assessment and recommends a multi-
metric and user-dependent approach that can be applied within science, modeling, and 
resource management communities. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (010.0010) Atmospheric and oceanic optics; (010.0280) Remote sensing and sensors; (000.5490) 
Probability theory, stochastic processes, and statistics. 

References and links 

1. C. R. McClain, “A Decade of Satellite Ocean Color Observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009). 
2. IOCCG, “Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology,” T. Platt, N. Hoepffner, V. 

Stuart and C. Brown, (eds.), Reports of the International Ocean-Colour Coordinating Group, No. 7, IOCCG, 
Dartmouth, Canada. (2008).

3. IOCCG, “Remote Sensing in Fisheries and Aquaculture,” M. H. Forget, V. Stuart and T. Platt, (eds.), Reports of
the International Ocean-Colour Coordinating Group, No. 8, IOCCG, Dartmouth, Canada. (2009). 

4. S. Dutkiewicz, A. E. Hickman, O. Jahn, W. W. Gregg, C. B. Mouw, and M. J. Follows, “Capturing optically 
important constituents and properties in a marine biogeochemical and ecosystem model,” Biogeosciences 
12(14), 4447–4481 (2015).

5. A. Gnanadesikan, K. Emanuel, G. A. Vecchi, G. W. Anderson, and R. Hallberg, “How ocean color can steer 
Pacific tropical cyclones,” Geophys. Res. Lett. 37(18), L18802 (2010).

6. C. S. Rousseaux and W. W. Gregg, “Recent decadal trends in global phytoplankton composition,” Global 
Biogeochem. Cycles 29(10), 1674–1688 (2015).

7. B. A. Schaeffer, K. Loftin, R. P. Stumpf, and P. J. Werdell, “Agencies collaborate, develop a cyanobacteria 
assessment network,” Eos (Wash. D.C.) 96, ••• (2015).

8. B. A. Walther, J. L. Moore, “The definitions of bias, precision, and accuracy, and their use in testing the 
performance of species richness estimators, with a literature review of estimator performance,” Ecography 28(6),
815–829 (2005). 

9. R. J. W. Brewin, S. Sathyendranath, D. Müller, C. Brockmann, P. Y. Deschamps, E. Devred, R. Doerffer, N. 
Fomferra, B. Franz, M. Grant, S. Groom, A. Horseman, C. Hu, H. Krasemann, Z. Lee, S. Maritorena, F. Melin,
M. Peters, T. Platt, P. Regner, T. Smyth, F. Steinmetz, J. Swinton, J. Werdell, and G. N. White III, “The ocean 
colour climate change initiative: III. a round-robin comparison on in-water bio-optical algorithms,” Remote 
Sens. Environ. 162, 271–294 (2015).

Vol. 26, No. 6 | 19 Mar 2018 | OPTICS EXPRESS 7404 

#315013 https://doi.org/10.1364/OE.26.007404 
Journal © 2018 Received 8 Dec 2017; revised 1 Mar 2018; accepted 2 Mar 2018; published 14 Mar 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.26.007404&domain=pdf&date_stamp=2018-03-14


10. C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error 
(RMSE) in assessing average model performance,” Clim. Res. 30, 79–82 (2005).

11. C. J. Willmott, K. Matsuura, and S. M. Robeson, “Ambiguities inherent in sums-of-squares-based error 
statistics,” Atmos. Environ. 43(3), 749–752 (2009).

12. C. J. Willmott, S. M. Robeson, and K. Matsuura, “Climate and Other Models May Be More Accurate Than 
Reported,” Eos (Wash. D.C.) 98, ••• (2017).

13. J. S. Armstrong, Evaluating Forecasting Methods. In Principles of Forecasting: A Handbook for Researchers 
and Practitioners (Kluwer, 2001).

14. M. H. Birnbaum, “Reply to the Devil’s advocates: Don’t confound model testing and measurement,” Psychol.
Bull. 81(11), 854–859 (1974).

15. T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments 
against avoiding RMSE in the literature,” Geosci. Model Dev. 7(3), 1247–1250 (2014).

16. C. A. Stow, J. Jolliff, D. J. McGillicuddy, Jr., S. C. Doney, J. I. Allen, M. A. M. Friedrichs, K. A. Rose, and P.
Wallhead, “Skill assessment for coupled biological/physical models of marine systems,” J. Mar. Syst. 76(1-2), 
4–15 (2009). 

17. F. Mélin and B. A. Franz, “Assessment of satellite ocean colour radiometry and derived geophysical products,” 
in Optical Radiometry for Oceans Climate Measurements, chap. 6.1, G. Zibordi, C. Donlon, and A. Parr, eds., 
Academic, Experimental Methods in the Physical Sciences 47, 609–638 (2014).

18. S. C. Doney, I. Lima, J. K. Moore, K. Lindsay, M. J. Behrenfeld, T. K. Westberry, N. Mahowald, D. M. Glover, 
and T. Takahashi, “Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against 
field and remote sensing data,” J. Mar. Syst. 76(1-2), 95–112 (2009).

19. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. 
McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).

20. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-
scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).

21. C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on 
three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012).

22. S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data
products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).

23. B. A. Franz, P. J. Werdell, G. Meister, S. W. Bailey, R. E. Eplee, Jr., G. C. Feldman, E. Kwiatkowska, C. R. 
McClain, F. S. Patt, and D. Thomas, “The continuity of ocean color measurements from SeaWiFS to MODIS,”
Proc. SPIE 5882, 58820W (2005).

24. J. L. Mueller, R. R. Bidigare, C. Trees, W. M. Balch, J. Dore, D. T. Drapeau, D. Karl, L. Van Heukelem and J.
Perl, “Ocean optics protocols for satellite ocean color sensor validation, revision 5, volume V: Biogeochemical 
and bio-optical measurements and data analysis protocols,” NASA Tech. Memo. 2003–211621, NASA Goddard
Space Flight Center, Greenbelt, Maryland (2003). 

25. S. B. Hooker, L. Clementson, C. S. Thomas, L. Schlüter, M. Allerup, J. Ras, H. Claustre, C. Normandeau, J.
Cullen, M. Kienast, W. Kozlowski, M. Vernet, S. Chakraborty, S. Lohrenz, M. Tuel, D. Redalje, P. Cartaxana,
C. R. Mendes, V. Brotas, S. G. P. Matondkar, S. G. Parab, A. Neeley, and E. S. Egeland, “The Fifth SeaWiFS
HPLC Analysis Round-Robin Experiment (SeaHARRE-5),”. NASA Tech. Memo 2012–217503, NASA
Goddard Space Flight Center, Greenbelt, Maryland (2012). 

26. P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. 
Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An 
overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote 
sensing,” Prog. Oceanogr. 160, 186–212 (2018).

27. T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, “Ocean color observations and modeling for 
an optically complex site: Santa Barbara Channel, California, USA,” J. Geophys. Res. 112(C7), C07011 (2007). 

28. P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J.
Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. 
d’Andon, A. Mangin, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent
optical properties,” Appl. Opt. 52(10), 2019–2037 (2013).

29. IOCCG, “Remote Sensing of Inherent Optical Properties: Fundamentals, Test of Algorithms, and Applications,”
Z.-P. Lee. (eds.), Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, 
Canada. (2006). 

30. J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 
100(C7), 13237–13254 (1995).

31. International vocabulary of metrology – Basic and general concepts and associated terms (VIM 3rd edition) 
(2012).

32. H. P. Young, “Condorcet’s theory of voting,” Am. Polit. Sci. Rev. 82(4), 1231 (1988). 
33. S. B. Broomell, V. David, and H. H. Por, “Pair-wise comparisons of multiple models,” Judgm. Decis. Mak. 6(8),

821 (2011). 
34. C. D. Mobley, J. Werdell, B. Franz, Z. Ahmad, and S. Bailey, “Atmospheric correction for satellite ocean color

radiometry,” NASA Technical Memorandum, 217551, 85 (2016).

Vol. 26, No. 6 | 19 Mar 2018 | OPTICS EXPRESS 7405 



35. P. J. Werdell, S. Bailey, B. Franz, L. Harding, Jr., G. C. Feldman, and C. R. McClain, “Regional and seasonal 
variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua,” Remote Sens. 
Environ. 113(6), 1319–1330 (2009).

36. E. J. Kwiatkowska, B. A. Franz, G. Meister, C. R. McClain, and X. Xiong, “Cross calibration of ocean-color 
bands from Moderate Resolution Imaging Spectroradiometer on Terra platform,” Appl. Opt. 47(36), 6796–6810 
(2008).

37. G. Meister, B. A. Franz, E. J. Kwiatkowska, and C. R. McClain, “Corrections to the calibration of MODIS Aqua 
ocean color bands derived from SeaWiFS data,” IEEE Trans. Geosci. Remote Sens. 50(1), 310–319 (2012).

38. F. J. Anscombe, “Graphs in statistical analysis,” Am. Stat. 27(1), 17–21 (1973). 
39. F. Mosteller and J. W. Tukey, Data analysis and Regression: A Second Course in Statistics (Addison-Wesley, 

1977). 
40. J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey, Graphical Methods for Data Analysis

(Wadsworth, 1983).
41. E. Tufte, The Visual Display of Quantitative Information (Graphics, 1983) 
42. W. S. Cleveland, Visualizing Data (Hobart, 1993) 
43. B. E. J. Cisneros, T. Oki, N. W. Arnell, G. Benito, J. G. Cogley, P. Döll, T. Jiang, and S. S. Mwakalila,

Economic and Related Instruments to Provide Incentives (chapter 17), in: Climate Change 2014: impacts, 
adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth 
assessment report of the intergovernmental panel on climate change 2014. 

44. C. J. Willmott, “On the validation of models,” Phys. Geogr. 2(2), 184–194 (1981). 

1. Introduction

The development and refinement of algorithms to derive geophysical variables from satellite 
measurements of ocean color has been pursued for decades [1]. These data records play a key 
role in furthering our scientific understanding of the spatial and temporal distributions of 
marine phytoplankton and other biogeochemical parameters on regional to global scales. Such 
parameters provide proxy (surrogate) indicators of marine ecosystem health and link to 
economically important measures, such as fisheries production, water quality, and 
recreational opportunities [2-3]. In the four decades since the advent of satellite ocean color, 
the number of algorithms and approaches to produce geophysical data products has increased 
substantially given improved knowledge of ocean optics, advances in and an increased 
volume of in situ measurements, improvements in computing power, and open access to 
satellite data records. Satellite measurements of ocean color now play an important role in 
scientific Earth system modeling [4–6] and resource management decision support [7]. This 
growing demand for satellite ocean color data products has necessitated the development and 
expansion of algorithms to accommodate user demands and requirements that span oceans, 
coastal marine waters, estuaries, lakes, reservoirs, and large rivers. Accommodating this 
influx of new and enhanced end-user needs subsequently resulted in a growing difficulty in 
assessing how algorithm refinements or algorithm implementation across (new) missions 
ultimately results in any meaningful or constructive improvement in the accuracy and 
precision of derived satellite data products. This difficulty partly results from the ocean color 
science community traditionally relying on a small set of statistical tools for algorithm 
assessment that provide metrics of overall performance that are not unequivocally easily 
interpreted or are appropriate for some, but not all, data sets or missions (and, thus, not 
appropriate across regions or missions). 

Estimating the performance of an algorithm requires metrics for accuracy, bias, and, 
ideally, variability (precision) [8]. The ocean color community frequently assesses algorithm 
performance using ordinary least squares metrics, in particular the root mean square error of 
the regression (RMSE), the coefficient of determination (r2), and the regression slope (see [9] 
for additional review). RMSE provides an appropriate metric for validation exercises when 
error distributions are Gaussian [15] and when the goal of an investigation is highlighting 
sensitivity to outliers (conceivable when testing a model). However, Gaussian data sets 
without outliers are not ubiquitous across all ocean color data sets to be validated, rendering 
these metrics occasionally informatively inferior to metrics without as much sensitivity to 
outliers and non-Gaussian distributions [10–14]. More commonly, error distributions in ocean 
color validation data sets have long tails (outliers) (Fig. 1), and RMSE estimates do not 
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capture the average error. The potentially misinterpreted results associated with sum of 
squares-based metrics has led to recommendations of metrics based on absolute deviations or 
errors [10-11, 13]. Mean absolute error (MAE), sometimes referred to as mean absolute 
deviation (MAD), and RMSE, also referred to as root mean square deviation (RMSD) take 
the form: 

1MAE

n

i ii
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n
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−
= (1)
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= 
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where M, O, and n represent the modeled value, the observation, and the sample size, 
respectively. RMSE varies not only with the average error, but also with variability in the 
error magnitudes (through their squaring) and the square root of the number of samples. In 
other words, RSME differs from MAE through its additional dependence on the distribution 
of error magnitudes and the sample size, both of which underscore its additional sensitivity to 
data set distributions and outliers [10,12]. 

While both r2 and regression slopes have their merits, they provide incomplete 
descriptions of algorithm performance (and slope is not an error metric). Reporting both has 
value (albeit not in isolation), but for completeness and to encourage community discussion 
of their interpretation, a review of their limitations follows. Regarding the former, r2 is not 
only sensitive to outliers, but is also: (1) inconsistently interpretable across varied data sets, as 
the prediction variance is normalized to the total variance and, thus, a model with a fixed 
error will report different r2 results when applied to areas with narrow versus wide data ranges 
[14]; and (2) can overstate variable relationships even with randomly selected variables [13]. 
With regards to the latter, the regression slope remains particularly unreliable for data sets 
with outliers as it employs squaring that can under- or over-emphasize the outliers, unless 
weighting or other complex methods are used to remove points with leverage on the 
relationship [16]. While slopes may be useful in assessing model performance over wide data 
ranges, they can also easily report a value of unity for a strongly biased, low-precision model, 
thereby complicating their interpretation and utility [14]. If error varies linearly across the 
data range, a slope (on the error residuals) may provide insight into such trends. Ultimately, r2 
and slope provide useful metrics for ocean color validation activities, but only with cautious 
interpretation and in combination with additional error metrics. Table 1 provides an additional 
summary and comparison between selected and historically used statistics. 

The urgency in developing robust (and, perhaps more importantly, broadly community 
endorsed) approaches for remote sensing algorithm assessment is evident through 
international efforts such as the Ocean Colour Climate Change Initiative that present 
comprehensive approaches to algorithm analysis [9]. In addition, agency laboratories such as 
the NASA Ocean Biology Processing Group (OBPG; https://oceancolor.gsfc.nasa.gov) 
require performance metrics that can be consistently applied to multiple missions of varied 
duration and availability of field validation data – without which comparisons of algorithms 
within a mission and of data products across missions become very difficult to interpret given 
spatial and temporal biases in field sampling and varied numbers of satellite-to-in situ 
matchup pairs. The importance of standardized methods, common assessment approaches and 
limitations, along with challenges associated with gathering high quality in situ validation 
data are discussed by Mélin and Franz in their assessment of ocean color satellite radiometry 
and geophysical products [17]. 
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Table 1. Summary of performance metric statistics suggested used by the manuscript and 
others commonly used by the ocean color satellite data products community highlighting 

the advantages and disadvantages of different metrics. 

Measurement Frequently Used 
Metrics 

Why or Why Not for Ocean Color Notes 

Accuracy 
RMSE 

• Distribution sensitive (assumes Gaussian) 
• Often misinterpreted to be a simple estimate of
average error
• No consistent relationship with average error 
magnitudes

Other Sum of Squares 
based measures have 
same problems, such as 
standard deviation, 
standard error. 

Goodness of 
fit r2 

• Can be misinterpreted if not given in context, because 
it lacks a response to bias and is sensitive to outliers 
• Can misrepresent error when the range is small
• Can overstate variable relationships even with 
apparently random error 

Slope 

• Can be misinterpreted, by reporting a good value for 
strongly-biased, low-precision models. 
• Leverages (biased errors on either end) produce
meaningless slopes 
• Cannot address non-linear error 
• Can allow tuning of a model to fit a particular region 

Common least squares 
regression gives biased 
slope when the x 
variables contain errors 
[9] 

Suggested 
Metrics 

Bias Bias 

• Quantifies the average difference between this 
estimator and expected value 
• Estimates systematic error 

Often based on mean, 
however median error 
can also be used if a 
more robust metric is 
needed 

Accuracy MAE 

• Does not amplify outliers 
• Accurately reflects error magnitude 

Compared to mean, 
median absolute 
estimates are less 
sensitive to outliers. 
Similar metrics include 
mean/ median absolute 
percent error 

New Approaches 

Point by point 
accuracy 

% wins 
(Residuals) 

• Considers model failures
• Provides consistent head-to-head comparison of 
algorithms

Pairwise comparison 
Decision support metric 

Temporal 
stability 

CV 
Intra-pixel 

• Estimates imagery pixel stability.
• Estimates algorithm spatial and temporal 
performance.
• Does not require satellite-to-in situ match-ups

Again, highlighting the interest and need for community discussion of algorithm 
assessment. While not necessarily related to ocean color, validation methods are also being 
examined in greater detail in other areas of oceanography [e.g., 16-17]. Stow et al. [16] 
reviewed the statistical metrics used to assess model skill in 142 papers from oceanographic 
journals from 2000 until 2007. They found that most studies relied on simple visual 
assessments, used subjective language such as “reasonable” to assess model performance, and 
rarely employed quantitative and objective statistics such as residuals (<20% of the time), all 
of which suggests a need for more rigorous methods. Stow et al. [16] also summarized a 
variety of statistical metrics for assessment, including approaches to compare spatial maps. 
Similarly, Doney et al. [18] examined the need for a standardized set of performance metrics 
to allow for ease in inter-comparing ecosystem-biogeochemistry model performance. They 
ultimately suggested a set of quantitative metrics and encouraged the adoption of a 
community-wide systematic standardized approach. Other Earth system disciplines have 
considered forecast evaluations methods, with discussions ranging from general assessment 
strategies for forecast models [e.g., 13] to specific methodologies, such as improved selection 
and interpretation of error metrics [12,14]. 
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Ultimately, given the influx of new and revised algorithms and new missions and 
increasing dynamic ranges of interest and expertise, the ocean color community needs 
consistent, meaningful, and community-endorsed statistical approaches for algorithm 
assessment that accommodate varied data set sizes and can be equally effectively applied to 
(that is, are scalable to) global, regional and local applications. This study presents an 
exploration of metrics to assess algorithm performance and proposes approaches to combine 
metrics for comprehensive algorithm evaluation. It also presents a recommended set of 
performance metrics that includes spatial and temporal assessments, which have often been 
overlooked with previous methods. The goals of this study are to: (1) identify and 
demonstrate a simple, reliable suite of statistical methods that are easy and appropriate for use 
by the science and end-user communities to assess remote sensing algorithms without a priori 
assumptions of data distributions; and (2) illustrate the pressing need to think critically about 
statistical analysis and move beyond the statistical metrics the ocean color community 
traditionally relies upon that can be regularly misinterpreted and therefore misleading. As a 
case study, this paper focuses on a well published and peer-reviewed satellite ocean color data 
product, the near-surface concentration of the photosynthetic pigment chlorophyll-a (Chl; mg 
m−3) [19–21]. This paper does not provide a definitive study that represents all water masses, 
data products, and user needs at all times, but rather highlights a set of metrics, graphics, and 
a strategy for algorithm assessment using some example global applications and reinforces 
the need to be analytical about model performance evaluation. 

2. Methods

2.1 Data and algorithms 

Coincident satellite-to-in situ Chl match-ups for the NASA Sea-viewing Wide Field-of-view 
Sensor (SeaWiFS; 1997-2010) were acquired from the NASA/OBPG SeaWiFS Bio-optical 
Archive and Storage System (SeaBASS) [22]. This satellite data product and in situ data set 
were selected because: (1) both are well characterized [1,22]; (2) both provided a wide 
dynamic range of observations (0.012 to 72 mg m−3 in situ); and, (3) the satellite retrievals of 
Chl from the multiple algorithms under consideration have very subtle differences that result 
in their performance being difficult to compare (thus, offering a desirably challenging data set 
with which to vet this approach). The match-ups were executed using a 5x5 satellite pixel box 
centered on the location of the in situ measurement and quality control of the match-ups 
followed methods detailed in Bailey and Werdell [22]. Briefly, (1) coincidence was 
considered as <3 hours between the satellite and in situ observation; (2) matches with more 
than half of marine pixels masked in a 5x5 satellite pixel box were excluded; (3) matches with 
coefficients of variation of the remaining unmasked pixels in the box exceeding 0.15 were 
excluded; and (4) Chl was reported as the filtered median of the remaining unmasked pixels 
in the box. The final sample size was 2,161 satellite-to-in situ pairs. These pairs were 
stratified into three trophic regions, defined using the mission-long SeaWiFS Chl climatology 
as oligotrophic (Chl ≤ 0.1mg m−3), mesotrophic (0.1 < Chl ≤ 1 Chl mg m−3), and eutrophic 
(Chl > 1 mg m−3) [23]. A range of uncertainties accompany the in situ data used as reference 
data, a deep exploration of which exceeds the scope of this manuscript. Briefly, however, 
definition of these uncertainties has been pursued or cataloged [24–26]. Therefore, type II 
linear regression with the reduced major axis (RMA) approach was used, accounting for 
uncertainties in both the dependent and independent variables [9, 27]. MAE, for example, can 
be scaled into an unbiased percentage by scaling the model-in situ difference by the mean of 
the model and in situ observations [17]. 

Three approaches to derive SeaWiFS Chl were considered, namely the OC3, OCI, and 
GSM algorithms. Briefly, ocean color satellite instruments measure top-of-atmosphere 
radiances at discrete visible and near-infrared wavelengths. Atmospheric correction 
algorithms are applied to these radiances to remove the contributions of the atmosphere and 
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derive estimates of spectral remote-sensing reflectances (Rrs(λ); sr−1), the light exiting the 
water column normalized to the incident surface irradiance [28]. Bio-optical algorithms are 
then applied to the Rrs(λ) to generate estimates of geophysical data products of interest, such 
as Chl. OC3 estimates Chl following the band ratio approach of O’Reilly et al. [19], where a 
blue-to-green ratio of Rrs(λ) statistically relates to Chl via a polynomial expression (see also 
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). Within OC3, the numerator is designated as 
the greater of Rrs(443), Rrs(490) and the denominator is Rrs(555). The ocean chlorophyll index 
(OCI) estimates Chl following Hu et al. [21], which blends two algorithms: (1) OC4, another 
band-ratio approach that differs from OC3 in that the numerator is designated as the greatest 
of Rrs(443), Rrs(490) and Rrs(510) for a given satellite pixel; and (2) an independent 
chlorophyll index (CI) derived as a spectral Rrs(λ) line height of reflectance at 555 nm above a 
baseline drawn from 443 to 670. OCI uses CI exclusively for pixels where Chl < 0.15 mg 
m−3, OC4 exclusively where Chl > 0.2 mg m−3, and a weighted transition from CI to OC4 
where 0.15 < Chl 0.2 mg m−3. While these latter two algorithms strictly adopt empirical 
relationships between Rrs(λ) and Chl, the final algorithm employs the semi-analytical 
approach of Maritorena et al. [20]. GSM (Garver, Siegel, Maritorena) uses a simplified form 
of the radiative transfer equation and a non-linear spectral matching optimization to derive 
Chl from Rrs(λ) [28-29]. 

Fig. 1. Normality probability plots of the error distributions for several ocean color models 
(described in section 2.1). Gaussian distributions would fall onto the dashed 1:1 line, the error 
distributions have long tails and therefore are non-Gaussian. 

Normality plots (Fig. 1) reveal that the error distribution of this SeaWiFS validation data 
set to be non-Gaussian with long tails, suggesting that mean square error metrics may be 
undesirable. This data set, being global is comprehensive, has a sample size that exceed 2,000 
matches. To our knowledge, this is the largest ocean color validation data set in the ocean 
color community – thus, providing a best-case scenario – and, yet, its distribution remains 
non-Gaussian. This does not challenge previous demonstrations that global, log-transformed 
Chl is nearly normally distributed [30], but rather indicates that the accumulated ground truth 
samples do not represent this normal distribution. Naturally, the sample sizes decrease when 
this data set is broken into subsets by trophic region and normality is never achieved. At the 
time of this writing, similar validation data sets available from SeaBASS include far fewer 
satellite-to-in situ pairs (e.g., <200 for the Suomi NPP Visible Infrared Imaging Radiometer 
Suite (VIIRS); see https://seabass.gsfc.nasa.gov) and all demonstrate non-Gaussian 
distribution behavior (not shown). 
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2.2 Selection of recommended statistics 

A variety of statistical performance metrics for algorithm performance assessment exist. 
These metrics cross numerous scientific communities, but their appropriateness for specific 
data sets varies [13]. Broadly speaking, identification of a meaningful metric depends on the 
intersection of the statistics appropriate for the characteristics of the modeled products and the 
statistics appropriate for the application of those products. User considerations when selecting 
performance metrics often include the impact of: (1) outliers; (2) the full dynamic range of 
the data versus a specific, narrow data range (e.g., performance in the global ocean versus in a 
single estuary or lake); (3) the temporal and/or spatial stability of an algorithm; (4) the spatial 
coverage provided by an algorithm; (5) allowable uncertainties; and, (6) allowable biases. 
Clarifying such considerations enables selection of performance metrics a priori [13]. 
Questions relating to trends, for example, may be better addressed by emphasizing model 
biases and long-term consistency as a priority over absolute model accuracies. 

2.2.1 Error metrics 

Core performance metrics for algorithm evaluation include bias (systematic error), variability 
(random error, precision), and accuracy that combines bias and variability [8,31]. Typically, 
systematic bias and accuracy metrics are calculated, and random error is inferred [10,13,14], 
even when it can be calculated from RMSE and bias [8,12]. Bias has long been a reported 
value in ocean color algorithm assessment and offers a simple description of the systematic 
direction of the error, as either over- or under- estimating the prediction on average [8]. MAE 
is an appropriate metrics of accuracy for non-Gaussian distributions. Random error provides 
an estimate of precision and isolates the contribution of random variability produced by the 
measurement from the overall algorithm error [8]. As such, the International Vocabulary of 
Metrology (VIM) defines random measurement error as equal to measurement error less the 
total systematic measurement error (bias) [31]. While methods to remove systematic error 
from total error exist under a Gaussian assumption exist, approaches to quantify the random 
error component of MAE for known non-Gaussian or unknown distributions are less 
developed [8,13]. The advantages of developing such an approach for ocean color algorithms 
will be covered further in the discussion. The remainder of this study focuses on bias and 
MAE, defined as: 
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Note that the observations are log-transformed (e.g., such that Eq. (4) differs from Eq. 
(1)). Many marine geophysical variables are conventionally log-transformed prior to 
calculation of error metrics as uncertainty and variance are proportional to the concentration, 
and the data values frequently span multiple orders of magnitude (Fig. 2). The end result of 
this log-transformation is the conversion of the metric from linear to multiplicative space. 
Generally speaking, the use of either linear or multiplicative metrics depends on the 
characteristics of the model, the variable of interest, and their uncertainties. Those with 
constant uncertainties (homoscedastic), such as water temperature, benefit from evaluation 
with linear metrics. Those with uncertainty that varies proportionally with data value, such as 
Chl, benefit from assessment with multiplicative metrics. Linear metrics have the same units 
as the variable examined, whereas multiplicative metrics are dimensionless. A multiplicative 
bias of 1.2 indicates that the model is 1.2x (20%) greater on average than the observed 
variable. Multiplicative MAE always exceed unity, such that a MAE of 1.5 indicates relative 
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measurement error of 50%. Here, multiplicative forms of the metrics were used, as Chl error 
is proportional to its concentration and spans over four decades in magnitude in the SeaWiFS 
validation data set (Fig. 2). Accordingly, the statistics were calculated in log10 space, then 
converted out of log10 space prior to interpretation of the results. The back-transformation 
from log10 space results in bias values closest to unity being the least biased and bias less than 
unity indicating a negative bias. The ocean color community has not typically transformed 
metrics from log10 space. This back transformation minimizes potential misinterpretation of 
reported error; for example, a reported log10 value of 0.3 does not indicate 30% uncertainty, 
but rather approximately a 100% uncertainty (100.3 = 1.995), suggesting a preferred practice 
of reporting 1.995 in lieu of 0.3. The r2 and the regression slope were also calculated for the 
analysis using log10-transformed Chl. 

Fig. 2. The top row are SeaWiFS-GSM, OC3, and OCI derived Chl to in situ Chl match-up 
scatterplot comparisons. The bottom row histograms shows the distribution of SeaWiFS-GSM, 
OC3, and OCI derived Chl values. Data were log10 transformed for display. 

2.2.2 Decision metrics 

Decision metrics enable additional comparison and selection of algorithms. Decision metrics 
date back to the 18th century mathematician Condorcet and are often described as “voting” 
methods [32]. One immediate practical approach is the pair-wise comparison based on 
Condorcet [33]. Pair-wise comparisons operate sequentially on each observation: (1) for a 
given observation, the model-observation differences are calculated for every model under 
consideration; (2) the model with the minimal difference is designated the winner for that 
given observation; (3) the number of wins per model are tabulated for all observations; and, 
(4) the model with the most wins is designated the best performing model. Unlike many other
error metrics, the pair-wise comparison directly considers model failures – when model A
provides a valid retrieval for a given observation but model B does not, only model A remains
in the pool of potential winners for that observation. This metric will penalize a model that
fails frequently, but performs well when it works. In this study, we adopted the pair-wise
comparison of algorithm residuals ( = model – observation), with the lowest residual
designated as the winner. Results of this analysis were reported in terms of percent wins.
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2.2.3 Spatially and temporally mapped metrics 

Spatial and temporal performance of an algorithm may further inform the performance 
assessment, as coincident match-ups between satellite and in situ data cannot ubiquitously 
capture model performance under all conditions at all times. In general, satellite and in situ 
match-up data sets remain sparsely populated on large temporal and spatial scales [22]. Time-
series analysis and population statistics provide one means of exploring spatial and temporal 
performance when sufficient in situ data exist [27,35]. Satellite imagery analysis provides 
another complementary – and, to our knowledge, largely unexplored – means of assessing 
algorithm behavior and consistency in space and time. Using satellite imagery to evaluate 
algorithm spatial extent of valid retrievals, temporal (e.g., day-to-day or week-to-week) 
consistency in retrievals, and spatiotemporal distributions of error metrics from satellite pixels 
may provide an additional decision discriminator when traditional model-versus-observation 
error metrics are otherwise limited. Such analyses may also be informative where decision 
support activities prioritize consistent and broad satellite coverage over model bias or 
accuracy. Furthermore, satellite imagery assessment informs on the effects of satellite data 
processing (through flagging or masking of questionable retrievals) on the algorithms, as 
elements of processing also vary in performance in space and time [34]. 

An approach that builds upon existing concepts used for on-orbit satellite calibration and 
validation activities was adopted to assess algorithm spatial and temporal performance [23, 
36-37]. SeaWiFS 14-day global composites (1-15 September 2007) were produced at 9-km
spatial resolution using an equal-area sinusoidal projection using SeaDAS software. Derived
products included Chl mean, Chl standard deviation, and the number of observations per
spatial bin included in the mean and standard deviation. The mean and the standard deviation
were calculated from pixels that contribute to the 9km bin both spatially and temporally
throughout the 14-day window. Trophic regions as described in Section 2.1 were used for
comparison. For each spatial bin in the 14-day composite with greater than one observation,
the coefficient of variation (CV) was calculated as the ratio of the mean of the standard
deviation to the mean, which is a normalized estimate of data spread around the mean. The
CV was used as an estimate of intra-pixel stability and an indicator of temporal consistency.

2.2.4 Decision graphics 

In addition to statistical metrics, plots and graphics have long been demonstrated as necessary 
for understanding model performance and uncertainties. Two basic plots are common in 
model assessment, namely, scatterplots of modeled versus reference values and residual plots 
of the difference between model and reference versus reference values [38-39]. Additionally, 
a variety of plots can be used to compare multivariate data and aid in model comparison such 
as scatterplot matrixes, parallel coordinate or profile symbol plots, and star plots [40–42]. Star 
plots (also known as radar plots) are used in this study to provide an example of an effective 
graphical approach for evaluating the behavior of algorithms across multiple error metrics 
[40–43]. A star plot visually displays and compares multiple metrics and, with appropriate 
scaling, highlights differences in the metrics [41,43]. In general, the plot center represents 
values that indicate unacceptable algorithm performance, such that values on a spoke (or ray) 
nearer to the center identify the poorer performing approaches. The maximum length of each 
spoke reveals more optimal performance of an algorithm, such that the best performing 
instance reaches farthest from the center. Star plots were generated to visually display and 
compare algorithm performance assessment using the bias, MAE, pair-wise comparison, and 
CV metrics, with their values scaled from zero to one. Maximum and minimum values must 
be assigned for each variable to create the range for normalization. Note that normalizing 
over the range of values requires attention to avoid exaggerating trivial differences between 
modeled retrievals [40]. For normalization in this case, zero was used for all minimum values 
and maximums were created by adding 0.1 to each variable’s absolute max value, with the 
exception of percent wins, for which was assigned a max value of 90%. Lower values for 
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many metrics (e.g., bias, MAE and CV) indicate better performance and, therefore, for the 
purposes of star plot normalization and visualization, we subtracted these metric values from 
a number greater than their maximum absolute value before normalizing. This transformation 
resulted in all of the best performing metrics visually reporting the largest values in the star 
plots, near the end of the spokes. 

3. Results

Satellite-to-in situ match-ups were executed for analyses on the full data set (Fig. 2). 
Qualitatively, the scatter plots show reasonably equivalent performance across the full 
dynamic range of Chl. The GSM regression slope was closest to unity (Table 2) despite 
showing the most scatter and outliers and the least visually linear relationship across the 
dynamic range of Chl (Fig. 2). 

Table 2. Statistical output comparing algorithm performance of the SeaWIFS-to-in situ 
Chl validation data set. The highlights indicate which algorithm best performed for each 

statistical comparison. If results were within 0.02 of best performing they were 
highlighted simply to emphasize similarly performing algorithms. It is possible to 

compare suggested approach on the left in addition to r2 and regression slop on the right. 

Suggested Metrics Other

Water Type 
Algorithm 

n bias MAE 
Accuracy 

Overall 
Wins (%) 

CV r2 slope 

Across All 
GSM 2037 0.79 1.76 41.4 0.59 0.78 0.99 

OC3 2161 1.03 1.63 49.5 0.55 0.84 0.90 

OCI 2161 1.03 1.61 53.8 0.45 0.85 0.90 

Oligotrophic 
GSM 247 1.39 1.47 67.7 1.05 0.14 1.41 

OC3 248 1.66 1.82 30.3 1.62 0.11 2.08 

OCI 248 1.72 1.81 58.7 1.06 0.14 1.87 

Mesotrophic 

GSM 864 0.79 1.58 47.1 0.85 0.51 1.24 

OC3 901 1.21 1.52 59.9 0.70 0.59 1.24 

OCI 901 1.18 1.54 40.7 0.63 0.60 1.30 

Eutrophic 
GSM 926 0.67 2.05 30.6 0.43 0.41 1.45 

OC3 1011 0.80 1.68 44.5 0.34 0.53 1.08 

OCI 1011 0.81 1.62 59.2 0.34 0.55 1.01 

Inspection of satellite-in situ residuals confirms the equivalent performance shown in the 
scatterplots and highlights the long tail of the GSM residual distribution (Fig. 3). Bias and 
MAE were calculated for the full data set and stratified by trophic level (Table 2). GSM 
reported slightly fewer successful match-ups (5.7%) than the OC3 and OCI. Semi-analytical 
algorithms such as GSM – and spectral matching approaches in general – are more sensitive 
to spectrally-dependent errors in radiometric data than those that employ band ratios and band 
differences and, following, fail to provide a retrieval more frequently. 

For the full data set, OCI and OC3 reported the lowest biases, with indistinguishable 
values of 1.03 (~3%). Recall that bias values closer to unity indicate less biased results and 
values less than one indicate negative biases, per the back transformation from log10 space. 
GSM reported the only negative bias of 0.79 (−21%). OCI and OC3 reported the lowest MAE 
with values of 1.6 indicating variability of 60% across all Chl. Collective consideration of 
bias and MAE designates OCI as the best performer for the full data set. While the r2 also 
indicates this, it does not provide ample additional information. Exploring this briefly, when 
two data sets have the same data range, their r2 provide qualitatively similar, and redundant, 

Vol. 26, No. 6 | 19 Mar 2018 | OPTICS EXPRESS 7414 



information compared to MAE and RMSE. But, both MAE and RMSE, however, provide a 
quantification of the error, whereas r2 does not. 

Fig. 3. Log10 residuals histograms and scatterplots the SeaWiFS-to-in situ Chl match-ups. The 
top row are histograms of log10 summarizing the error distribution of GSM, OC3, and OCI 
algorithms. The bottom panels are residual plots of the difference between model satellite Chl 
and the reference in situ values versus reference values. The plots were created with log10 
values, but the axes are in Chl units (mg m−3). 

Algorithm performance varied for each trophic level (Table 2). A detailed discussion of 
mechanisms for this variation exceeds the scope of this paper, but briefly, causes include 
trophic-level-specific variations in atmospheric correction and Chl algorithm performance, in 
situ data sampling and processing (in situ measurement uncertainties can vary with water 
type), and spatial and temporal representativeness. GSM emerged as the best performer for 
oligotrophic water. Oligotrophic values of r2 and regression slope are not unequivocally 
informative, largely resulting from a small Chl range that spans only from 0.02 to 0.1 mg m−3 
for this trophic level. The extremely low r2, combined with the large slopes, might lead to a 
conclusion that these models perform most poorly in this trophic region. Yet, their accuracies 
in oligotrophic waters exceed those in eutrophic waters, and GSM in oligotrophic water 
reports the best MAE accuracy of any application presented in this study. For mesotrophic 
waters, similarities in reported error metrics confound performance assessment, as the biases, 
MAE, r2 and regression slope differ only slightly across algorithms. Depending on the end 
user requirements, an evaluator may be forced to simply prioritize bias (OCI) versus accuracy 
(OC3) or vice versa. For eutrophic waters, OCI emerged as the best performer across all 
metrics. 
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Table 3. Chl algorithm performance assessed point by point across all water types and by 
individual water type. The “winner” was the algorithm with the smallest absolute 

residual in a pair to pair comparison. 

Percent Wins 
Algorithm GSM OC3 OCI

Across Water Types n = 2161 
GSM X 57.5 59.0
OC3 42.5 x 52.0
OCI 41.0 48.0 x

Overall Wins 41.8 52.7 55.5
GSM Failure 124 (5.7%) 

Oligotrophic n = 248 
GSM X 29.0 40.7
OC3 71.0 x 67.7
OCI 59.3 32.3 x

Overall Wins 65.1 30.7 54.2
GSM Failure 1 (0.4%) 

Mesotrophic n = 901 
GSM X 54.6 51.8
OC3 45.4 x 31.9
OCI 48.2 68.1 x

Overall Wins 46.8 61.4 41.8
GSM Failure 37 (4.1%) 

Eutrophic n = 1011 
GSM X 67.3 71.2
OC3 32.7 x 59.7
OCI 28.8 40.3 x

Overall Wins 30.8 53.8 65.5
GSM Failure 85 (8.4%) 

Results from the pair-wise comparisons provide additional discriminators in support of the 
previously reported error metrics (Tables 2 and 3). For the full data set, OCI won most 
frequently (~54% wins), supporting the error metric identification of this algorithm as the best 
performer. This performance is not uniformly distributed across water types. For oligotrophic 
waters, GSM won most frequently (65.1%), supporting its error metric identification as the 
best performer. For mesotrophic water, pair-wise comparison provides perhaps the most 
discriminating assessor of algorithm performance. The error metrics presented above 
identified OC3 and OCI as candidate best performers for this mesotrophic subset, however, 
the pair-wise comparison reported OC3 won most frequently across all algorithms overall 
(61.4%) and when compared one-on-one with OCI, OC3 outperformed 68.1% of the time. 
For eutrophic water, OCI emerged as the best performer (61.4%), which also reported slightly 
better bias and MAE. In all subsets, GSM reported slightly smaller sample sizes, with its 
frequency of failure systematically increasing from oligotrophic (0.4% failure rate) to 
eutrophic (8.4% failure rate) waters. This difference can partially explain the lower percent 
wins for GSM, but not enough to explain the substantial differential in wins between GSM 
and the other algorithms in eutrophic water. 

While not executed fully here, one might also compare only common satellite-in situ pairs 
(that is, only those where all approaches provided a valid match-up). In some situations, 
additional information on algorithm performance may be revealed through evaluation of 
results across common ranges of applicability. That said, within the context of this study, a 
reanalysis across all algorithms considering only the 2,037 GSM match-ups led to minimal 
differences relative to the values reported in Table 2, with OCI and OC3 bias and MAE 
shifting by <0.02. 

Consideration of the temporal patterns in satellite imagery offers an additional 
discriminator for the previously reported error metrics. The 14-day composites of OCI, OC3, 
and GSM show similar patterns in the global spatial distribution of Chl (Fig. 4). In the open 
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ocean gyres, GSM and OCI maintain lower intra-pixel CVs of 1.05 and 1.06, respectively, 
compared to 1.62 for OC3 suggesting greater temporal stability in their retrievals (Table 2). 

Fig. 4. Global image of SeaWiFS 14-day OCI-, OC3-, GSM-derived mean Chl, standard 
deviation, and number of observations (nobs). Satellite imagery analysis provides a means of 
assessing algorithm behavior and consistency in time and space. The satellite imagery can be 
used to evaluate algorithm spatial extent of valid retrievals, temporal (e.g., day-to-day or week-
to-week) consistency in retrievals, and spatiotemporal distributions of error metrics from 
compiled satellite pixels. nobs can be used to compare the spatial coverage consistency of the 
algorithms. These analyses may also be informative where decision support activities prioritize 
consistent and broad satellite coverage. 

In mesotrophic water, where the other error metrics do not unequivocally identify a best 
performer, the intra-pixel CV identifies OCI (0.63) as a somewhat better performer than OC3 
(0.7), which provides a useful metric for decision support prioritizing temporal algorithm 
stability over overall algorithm variability. The intra-pixel CV of OCI falls below the other 
algorithms for the full, mesotrophic, and eutrophic data sets and just above that of GSM alone 
for the oligotrophic subset. However, in complex and dynamic waters, large natural spatial 
and temporal variability might be expected and, in those cases CV, cannot be as effectively 
used as a guidance for model performance. In addition, algorithm saturation at their lowest 
and/or highest ends (that is, at the boundaries of which retrievals are provided) could also 
provide misleadingly low CVs. 

4. Discussion and conclusions

Restating the specific goals of this study, it aimed to: (1) demonstrate a simple, reliable suite 
of statistical methods that are appropriate for assessing remote sensing algorithms without a 
priori assumptions of data distributions; and (2) reiterate the need to think critically about 
statistical analysis and to move beyond the statistical metrics the ocean color community 
traditionally relies upon that are regularly misinterpreted and sometimes misapplied. While a 
modern, global evaluation of common SeaWiFS Chl data products emerged naturally as a 
secondary study deliverable, the forthcoming discussion primarily explores goals (1) and (2). 
A major component of this work is the suggested use of error metrics that avoid sum-of-
square error measures, in favor of simple deviation metrics, because of the non-Gaussian 
error distribution of the case-study data set (and others commonly used in satellite data 
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product validation activities) and the desire to minimize the impact of outliers on such 
analyses [e.g., 11–15]. Although RMSE can often provide similar results to MAE, it will 
deviate more strongly in the presence of greater extremes in outliers (noting, of course, the 
utility of RMSE when there is specific interest in the relative error of the outliers). As 
community interest often focuses on bulk errors in satellite retrievals – most notably, space 
agencies with requirements to produce the best possible globally-representative data products 
from multiple satellite missions – this study highlighted MAE and its portability across data 
sets in lieu of RMSE. 

In principle, MAE, RMSE, bias, r2, and regression slopes all provide useful information 
for algorithm performance assessment when applied appropriately and interpreted 
conscientiously. In practice, however, misuse and misinterpretation exist and, following, 
additional community dialog on error metric best practices and proper reporting and 
interpretation remains prudent. This work serves only to contribute to a larger conversation to 
be conducted within the ocean color community. Table 2 reports validation results from our 
recommended error metrics (bias, MAE, CV, and percent wins), as well as from the 
commonly adopted metrics of r2 and regression slope. Put forth here simply as an 
instructional example, a deficiency of regression slope as a metric emerges in Table 2. The 
slope for GSM for the combination of all water types, for example, approaches unity (0.99), 
yet within each water type it exceeds unity (1.4, 1.24, and 1.45 for the oligotrophic, 
mesotrophic, and eutrophic subsets, respectively). In addition, and as noted earlier, some 
slopes reported as near unity (e.g., the latter GSM case and OC3 and OCI in eutrophic water) 
accompany severe biases and poor MAEs. Similarly, while r2 provides a useful relative 
ranking, its values can be misinterpreted even for algorithms that perform well, such as in 
oligotrophic waters as discussed previously. Acknowledging the pedantry of the suggestion, it 
remains critical for the ocean color community to avoid reporting these values in isolation 
(that is, without additional metrics such as bias and MAE). 

While it may be tempting to continue with MAE, RMSE, and their equivalents (e.g., mean 
absolute percent error), as well as r2 and regression slopes, for legacy purposes, the use of too 
many metrics introduces confusion and redundant metrics can lead to decision partiality [13]. 
For example, a series of metrics estimating the same performance aspect of an algorithm will 
repeatedly favor the same algorithm (e.g., MAE and RMSE, which differ primarily through 
the latter’s use of squaring). Redundant metrics also tend to lead decision making towards 
algorithms that perform best at variability, as there are more metrics for variability than for 
bias. 

Ocean color end-users rely heavily on satellite imagery. The recommended metrics of 
percent wins and intra-pixel CV provided new insights into algorithm performance by 
considering algorithm failure and temporal stability in satellite imagery as part of their 
performance evaluation. Percent wins, the pairwise match-up of residuals, incorporated 
failure into the computation of relative performance (Table 3). The CV of composite satellite 
pixels provides a way for considering the coverage and temporal stability of an algorithm 
(Fig. 4, Table 2). Naturally, their application will vary depending on the end-user 
requirements. For example, the number of observations might provide a priority metric for 
certain needs. The intra-pixel CV temporal stability comparisons offer a key piece of 
information that can address algorithm quality prior to examining satellite-to-in situ 
matchups. If the end-user concern is image products, then spatial/temporal metrics may take 
precedence over bias or accuracy metrics. This image analysis does not require field 
observations, such that algorithms can be examined for consistency and variability with 
satellite imagery alone. Furthermore, the approach has particular value for revealing 
algorithm differences regarding satellite data processing flags and masking of invalid data, a 
task that is nearly impossible using in situ matchups. The proposed global spatial and 
temporal metrics and analyses also scale easily to localized regions (Fig. 5), making them 
especially useful in places where regional satellite-to-in situ match-ups remain limited. The 
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case study for this focuses on productive water offshore of the U.S. east coast (Fig. 5). 
Generally speaking, patterns of OCI and GSM Chl behave similarly, although some of the 
potential additional variability in GSM discussed in Section 3 reveals itself (e.g., the spurious 
high (yellow) value in the upper left corner). Both algorithms report nearly identical sample 
sizes per spatial bin, yet the patterns in standard deviation differ somewhat strikingly, 
providing a potentially useful discriminator when prioritizing temporal stability. Note also 
that this meso-to-eutrophic case study visually suggests somewhat similar performance 
between OCI and GSM, which is in conflict with the error metrics reported in Section 3. 
Ultimately, such a conflict indicates a potential regional influence on algorithm performance, 
thereby reinforcing the importance and value of consistent assessment metrics that scale 
globally to regionally. Again, it must be kept in mind that in naturally dynamic regions of the 
ocean, the CV will not give meaningful insight in to algorithm performance, because the real 
system variability will increase the CV. 

Fig. 5. US central east coast regional images of a SeaWiFS14 day OCI and GSM mean Chl, 
standard deviation, and number of observations (nobs). Additional details in the Fig. 4 caption. 
The regional image can be helpful in assessing algorithm features at a local level. 

Sound graphical analysis remains a key part of any data analysis [39-40]. Scatterplots and 
residual error plots capture individual metrics. Star plots, however, provide a tool to visually 
consolidate algorithm performance assessment across all recommended metrics (bias, MAE, 
percent wins, and CV, and across water types), thus providing a powerful and convenient 
resource for visual comparison of results and differences (Fig. 6). While the algorithms report 
comparable performance visually across the full data set, their performance differences reveal 
themselves more readily for the individual trophic levels. For example, the star plots clearly 
demonstrate the superior performance of GSM in oligotrophic waters and its lesser 
performance in eutrophic waters. They also highlight the two dominant discriminators for the 
mesotrophic subset, namely the pair-wise comparisons and intra-pixel CV. Furthermore, the 
star plots demonstrate the advantage of moving beyond only reporting generic satellite-to-in 
situ scatter plots. Algorithm performance details remain hidden in scatterplots when data are 
not examined in additional detail, for example by water types or season, as is often the case in 
regions with small dynamic ranges of observations [e.g., 35]. The additional visual 
exploration provided by star plots, for example, assists with identification of patterns in 
results that might otherwise be 
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Fig. 6. Comparison of the metrics results of bias, MAE, pairwise percent wins and coefficient 
of variation summarized in star plots across all water types. The plot center represents values 
that indicate poor algorithm performance, while farthest from center represents the best 
performance. The numbers represent the value of the best performing algorithm value for each 
metric. 

overlooked without such a synoptic view. To reiterate a nuance, the importance of 
thoughtfully scaling the star plot spokes is essential, such that minor differences are not 
exaggerated, or conversely, that significant, yet small differences, are not overlooked. 

Ultimately, the ocean color community desires development and standardization of an 
objective classification system for algorithm performance that makes use of multiple 
performance metrics. Again, ideally, metrics with consistent applicability to a range of 
sample sizes, outliers, and error distributions provide the greatest utility to support space 
agency validation of satellite data products across missions and regional activities with 
limited ground-truth data. Brewin et al. [9] developed an objective assessment method 
assigning points based on algorithm performance with algorithms compared to one another 
through a suite of statistical measures, acknowledging the limitations and uncertainties of 
their approach. The use of redundant statistics remains one source of decision partiality in 
their approach, therefore best practices may evolve to identification of one metric each for 
statistical bias, precision, and accuracy. 

Other objective measures, such as pair-wise comparisons and the use of graphical 
displays, like star plots, provide additional, independent, and consistent methods for 
evaluating multiple algorithms without the use of redundant statistics. Stow et al. [16] and 
Doney et al. [18] also proposed a standard set of metrics for performance evaluation for 
ecological models with a similar purpose of challenging the field to routinely use a 
recommended and standardized approach to model assessment. Some metrics overlap with 
those suggested here (e.g. bias and MAE) however, they diverged from this paper with their 
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suggestions of square error metrics (r2 and RMSE), which may be appropriate for such time-
dependent modeling. A consistent set of robust metrics will improve the quality of the 
analysis and simplify the community assessment of algorithms and their potential utility. 
Brewin et al. [9] proposed meta-analysis of parameters for ocean color. The pair-wise method 
can fit nicely into this approach, potentially allowing comparison of the metrics between 
algorithms. 

Precision is not often reported in ocean color methods, most likely because RMSE tends 
to track random error (more closely than bias). A precision metric consistent with MAE 
would provide more insight into patterns when the biases are relatively high, but this involves 
research beyond the scope of this paper. Generally speaking, there has been a lack of 
discussion of precision metrics for non-Gaussian distributions, although the assessment of 
random error could be useful to algorithm performance assessment. In contrast, precision 
metrics for distributions with Gaussian errors exist. Briefly, mean square error can be readily 
partitioned as the sum of bias2 + precision2 (with similar portioning available for related 
statistics based on standard error). Currently, however, there is no equivalent method for 
determining precision metrics reported for MAE [8,44]. 

Finally, we recommend that all future validation and algorithm comparison studies clearly 
and unequivocally explain the rationale for the a priori selection of metrics (in particular, the 
consideration of redundant metrics if pursued) and the path and/or steps used to identify the 
best performer. This will provide additional clarity to the subsequent reader, and also 
reinforce critical interpretation of results by the researchers. The end-user, based on his/her 
research question(s) and available resources, may need to select specific metrics that are 
higher or lower priority. One algorithm might be incrementally superior to another in reported 
metrics, but the performance superiority may be too small to be of consequence, especially if 
differences exist in the implementation of the algorithm (e.g., its computational efficiency). 
Furthermore, nuances remain in the choice of metrics that require user evaluation. Data sets 
of limited size but large dynamic range, for example, may require alternate metric 
formulations. In this case, biases might be reported as the median of the differences instead of 
the mean, just as, the median of the absolute error might be used instead of the mean. Finally, 
constraining and preselecting the metrics will also reduce the risk of decision prejudice, thus 
avoiding the selection of the metric that favors a preferred result. 

In summary, a generic summary of recommendations for ocean color validation activities: 

(1) Identify the end-user/application criteria to be used and priorities to be applied in
performance assessment and best performer identification in order to identify the
appropriate metrics.

(2) Subsequently, report the rationale for all decisions and metrics when documenting
results.

(3) Apply quality assurance and control best practices to the data sets, both reference and
model.

(4) Use error metrics that are statistically robust for non-Gaussian data, such as metrics
based on absolute deviation rather than those based on mean square error (or slope).
Or, demonstrate the appropriateness of other metrics.

(5) Select no more than one metric for each estimate of bias, accuracy, and precision to
reduce the likelihood of decision bias caused by redundant metrics.

(6) Use metrics that inform on algorithm temporal and spatial stability, which are not
typically captured in #4.

(7) Include additional objective metrics such as pair-wise comparisons (percent wins) to
capture relative performance and aid in decision support (e.g., Brewin et al., 2015).
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(8) Generate decision graphics, such as star plots, in addition to traditional scatter (and
residual error) plots to offer synoptic visualization of all considered metrics.

In conclusion, traditional approaches for ocean color algorithm performance assessment 
rely heavily on commonly used, but not necessarily appropriate, statistical metrics. A 
methodology combining metrics and graphics is essential in addition to considering end-users 
criteria for the assessment. No single metric covers all performance criteria and therefore 
combining metrics is necessary. This study demonstrated and provides recommendations for 
an alternative, straightforward and robust approach for evaluating and comparing ocean color 
algorithms, specifically bias, MAE, percent wins, and intra-pixel CV. The goal of this study 
was not to provide the final word on metrics for satellite validation, but rather contribute to an 
emerging, larger community-wide conversation on satellite algorithm performance 
assessment. and underline the necessity to critically think about model evaluation. 
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